Driver Action Prediction Using Deep (Bidirectional) Recurrent Neural Network

نویسندگان

  • Oluwatobi Olabiyi
  • Eric Martinson
  • Vijay Chintalapudi
  • Rui Guo
چکیده

Advanced driver assistance systems (ADAS) can be significantly improved with effective driver action prediction (DAP). Predicting driver actions early and accurately can help mitigate the effects of potentially unsafe driving behaviors and avoid possible accidents. In this paper, we formulate driver action prediction as a timeseries anomaly prediction problem. While the anomaly (driver actions of interest) detection might be trivial in this context, finding patterns that consistently precede an anomaly requires searching for or extracting features across multi-modal sensory inputs. We present such a driver action prediction system, including a real-time data acquisition, processing and learning framework for predicting future or impending driver action. The proposed system incorporates camera-based knowledge of the driving environment and the driver themselves, in addition to traditional vehicle dynamics. It then uses a deep bidirectional recurrent neural network (DBRNN) to learn the correlation between sensory inputs and impending driver behavior achieving accurate and high horizon action prediction. The proposed system performs better than other existing systems on driver action prediction tasks and can accurately predict key driver actions including acceleration, braking, lane change and turning at durations of 5sec before the action is executed by the driver. Keywords— timeseries modeling, driving assistant system, driver action prediction, driver intent estimation, deep recurrent neural network

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

Short-term traffic forecasting based on deep learning methods, especially long-term short memory (LSTM) neural networks, received much attention in recent years. However, the potential of deep learning methods is far from being fully exploited in terms of the depth of the architecture, the spatial scale of the prediction area, and the prediction power of spatial-temporal data. In this paper, a ...

متن کامل

Deep Bidirectional and Unidirectional LSTM Recurrent Neural Network for Network-wide Traffic Speed Prediction

Short-term traffic forecasting based on deep learning methods, especially long short-term memory (LSTM) neural networks, has received much attention in recent years. However, the potential of deep learning methods in traffic forecasting has not yet fully been exploited in terms of the depth of the model architecture, the spatial scale of the prediction area, and the predictive power of spatial-...

متن کامل

Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks

Motivation Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidir...

متن کامل

The Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network

One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...

متن کامل

Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks

Protein secondary structure prediction is an important problem in bioinformatics. Inspired by the recent successes of deep neural networks, in this paper, we propose an end-to-end deep network that predicts protein secondary structures from integrated local and global contextual features. Our deep architecture leverages convolutional neural networks with different kernel sizes to extract multis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.02257  شماره 

صفحات  -

تاریخ انتشار 2017